3.1.28 \(\int \frac {A+B x+C x^2}{x^3 (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=288 \[ -\frac {\left (A \left (b^2-2 a c\right )-a b C\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}+\frac {(A b-a C) \log \left (a+b x^2+c x^4\right )}{4 a^2}-\frac {\log (x) (A b-a C)}{a^2}-\frac {A}{2 a x^2}-\frac {B \sqrt {c} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} a \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {B}{a x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 288, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 11, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {1662, 1251, 800, 634, 618, 206, 628, 12, 1123, 1166, 205} \begin {gather*} -\frac {\left (A \left (b^2-2 a c\right )-a b C\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}+\frac {(A b-a C) \log \left (a+b x^2+c x^4\right )}{4 a^2}-\frac {\log (x) (A b-a C)}{a^2}-\frac {A}{2 a x^2}-\frac {B \sqrt {c} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} a \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {B}{a x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x + C*x^2)/(x^3*(a + b*x^2 + c*x^4)),x]

[Out]

-A/(2*a*x^2) - B/(a*x) - (B*Sqrt[c]*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4
*a*c]]])/(Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (B*Sqrt[c]*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c
]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - ((A*(b^2 - 2*a*c) - a*b*C)*ArcTan
h[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*a^2*Sqrt[b^2 - 4*a*c]) - ((A*b - a*C)*Log[x])/a^2 + ((A*b - a*C)*Log[a
+ b*x^2 + c*x^4])/(4*a^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 1662

Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
 k}, Int[(d*x)^m*Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(a + b*x^2 + c*x^4)^p, x] + Dist[1/d, Int[(d*
x)^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q - 1)/2 + 1}]*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{
a, b, c, d, m, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {A+B x+C x^2}{x^3 \left (a+b x^2+c x^4\right )} \, dx &=\int \frac {B}{x^2 \left (a+b x^2+c x^4\right )} \, dx+\int \frac {A+C x^2}{x^3 \left (a+b x^2+c x^4\right )} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {A+C x}{x^2 \left (a+b x+c x^2\right )} \, dx,x,x^2\right )+B \int \frac {1}{x^2 \left (a+b x^2+c x^4\right )} \, dx\\ &=-\frac {B}{a x}+\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {A}{a x^2}+\frac {-A b+a C}{a^2 x}+\frac {A \left (b^2-a c\right )-a b C+c (A b-a C) x}{a^2 \left (a+b x+c x^2\right )}\right ) \, dx,x,x^2\right )+\frac {B \int \frac {-b-c x^2}{a+b x^2+c x^4} \, dx}{a}\\ &=-\frac {A}{2 a x^2}-\frac {B}{a x}-\frac {(A b-a C) \log (x)}{a^2}+\frac {\operatorname {Subst}\left (\int \frac {A \left (b^2-a c\right )-a b C+c (A b-a C) x}{a+b x+c x^2} \, dx,x,x^2\right )}{2 a^2}-\frac {\left (B c \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 a}-\frac {\left (B c \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 a}\\ &=-\frac {A}{2 a x^2}-\frac {B}{a x}-\frac {B \sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(A b-a C) \log (x)}{a^2}+\frac {(A b-a C) \operatorname {Subst}\left (\int \frac {b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a^2}+\frac {\left (A \left (b^2-2 a c\right )-a b C\right ) \operatorname {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 a^2}\\ &=-\frac {A}{2 a x^2}-\frac {B}{a x}-\frac {B \sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {(A b-a C) \log (x)}{a^2}+\frac {(A b-a C) \log \left (a+b x^2+c x^4\right )}{4 a^2}-\frac {\left (A \left (b^2-2 a c\right )-a b C\right ) \operatorname {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 a^2}\\ &=-\frac {A}{2 a x^2}-\frac {B}{a x}-\frac {B \sqrt {c} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {B \sqrt {c} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} a \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {\left (A \left (b^2-2 a c\right )-a b C\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{2 a^2 \sqrt {b^2-4 a c}}-\frac {(A b-a C) \log (x)}{a^2}+\frac {(A b-a C) \log \left (a+b x^2+c x^4\right )}{4 a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.89, size = 377, normalized size = 1.31 \begin {gather*} \frac {\frac {\left (A \left (b \sqrt {b^2-4 a c}-2 a c+b^2\right )-a C \left (\sqrt {b^2-4 a c}+b\right )\right ) \log \left (\sqrt {b^2-4 a c}-b-2 c x^2\right )}{\sqrt {b^2-4 a c}}+\frac {\left (A \left (b \sqrt {b^2-4 a c}+2 a c-b^2\right )+a C \left (b-\sqrt {b^2-4 a c}\right )\right ) \log \left (\sqrt {b^2-4 a c}+b+2 c x^2\right )}{\sqrt {b^2-4 a c}}+4 \log (x) (a C-A b)-\frac {2 a A}{x^2}-\frac {2 \sqrt {2} a B \sqrt {c} \left (\sqrt {b^2-4 a c}+b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {2 \sqrt {2} a B \sqrt {c} \left (\sqrt {b^2-4 a c}-b\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b}}-\frac {4 a B}{x}}{4 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x + C*x^2)/(x^3*(a + b*x^2 + c*x^4)),x]

[Out]

((-2*a*A)/x^2 - (4*a*B)/x - (2*Sqrt[2]*a*B*Sqrt[c]*(b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b -
 Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (2*Sqrt[2]*a*B*Sqrt[c]*(-b + Sqrt[b^2
- 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*
c]]) + 4*(-(A*b) + a*C)*Log[x] + ((A*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c]) - a*(b + Sqrt[b^2 - 4*a*c])*C)*Log[-b
 + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/Sqrt[b^2 - 4*a*c] + ((A*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c]) + a*(b - Sqrt[b^
2 - 4*a*c])*C)*Log[b + Sqrt[b^2 - 4*a*c] + 2*c*x^2])/Sqrt[b^2 - 4*a*c])/(4*a^2)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A+B x+C x^2}{x^3 \left (a+b x^2+c x^4\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(A + B*x + C*x^2)/(x^3*(a + b*x^2 + c*x^4)),x]

[Out]

IntegrateAlgebraic[(A + B*x + C*x^2)/(x^3*(a + b*x^2 + c*x^4)), x]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x^3/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [B]  time = 5.87, size = 3353, normalized size = 11.64

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x^3/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

-1/4*(C*a - A*b)*log(abs(c*x^4 + b*x^2 + a))/a^2 + (C*a - A*b)*log(abs(x))/a^2 - 1/8*((2*b^4*c^2 - 16*a*b^2*c^
3 + 32*a^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c - 1
6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - s
qrt(b^2 - 4*a*c)*c)*a*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c^2 + 4*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 - 2*(b^2 - 4*a*c)*b^2*c^2 + 8*(b^2 - 4*a*c)*a*c^3)*B*c^2
 + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*
sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^2 + 2*b^5*c^2 + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b
*c^3 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^3 -
 16*a*b^3*c^3 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^4 + 32*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8
*(b^2 - 4*a*c)*a*b*c^3)*B*abs(c) + (2*b^4*c^4 - 8*a*b^2*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 -
4*a*c)*c)*b^4*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + 2*sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*
b^2*c^4 - 2*(b^2 - 4*a*c)*b^2*c^4)*B)*arctan(2*sqrt(1/2)*x/sqrt((a^4*b*c + sqrt(a^8*b^2*c^2 - 4*a^9*c^3))/(a^4
*c^2)))/((a^2*b^4*c - 8*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + 16*a^4*c^3 + 8*a^3*b*c^3 + a^2*b^2*c^3 - 4*a^3*c^4)*c^2)
 + 1/8*((2*b^4*c^2 - 16*a*b^2*c^3 + 32*a^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4
 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
+ sqrt(b^2 - 4*a*c)*c)*b^3*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 - 8*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 -
4*a*c)*c)*b^2*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3 - 2*(b^2 - 4*a*c)*b^2*c^
2 + 8*(b^2 - 4*a*c)*a*c^3)*B*c^2 - 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c - 8*sqrt(2)*sqrt(b*c + sqr
t(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^2 - 2*b^5*c^2 + 16*sqrt(2)*sqrt(
b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + sqrt(2)*sqrt(b*c
+ sqrt(b^2 - 4*a*c)*c)*b^3*c^3 + 16*a*b^3*c^3 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^4 - 32*a^2*b*c
^4 + 2*(b^2 - 4*a*c)*b^3*c^2 - 8*(b^2 - 4*a*c)*a*b*c^3)*B*abs(c) + (2*b^4*c^4 - 8*a*b^2*c^5 - sqrt(2)*sqrt(b^2
 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c
)*a*b^2*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^4 - 2*(b^2 - 4*a*c)*b^2*c^4)*B)*arctan(2*sqrt(1/2)*x/sqrt((a^4*b*c - sqr
t(a^8*b^2*c^2 - 4*a^9*c^3))/(a^4*c^2)))/((a^2*b^4*c - 8*a^3*b^2*c^2 - 2*a^2*b^3*c^2 + 16*a^4*c^3 + 8*a^3*b*c^3
 + a^2*b^2*c^3 - 4*a^3*c^4)*c^2) + 1/16*((b^7*c - 10*a*b^5*c^2 - 2*b^6*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3 + b
^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^5 - (b^6*c - 10*a*b^4*c^2 - 2*b^5*c^2 + 32*a^
2*b^2*c^3 + 12*a*b^3*c^3 + b^4*c^3 - 32*a^3*c^4 - 16*a^2*b*c^4 - 6*a*b^2*c^4 + 8*a^2*c^5)*sqrt(b^2 - 4*a*c))*A
*abs(c) - (a*b^6*c - 8*a^2*b^4*c^2 - 2*a*b^5*c^2 + 16*a^3*b^2*c^3 + 8*a^2*b^3*c^3 + a*b^4*c^3 - 4*a^2*b^2*c^4
- (a*b^5*c - 8*a^2*b^3*c^2 - 2*a*b^4*c^2 + 16*a^3*b*c^3 + 8*a^2*b^2*c^3 + a*b^3*c^3 - 4*a^2*b*c^4)*sqrt(b^2 -
4*a*c))*C*abs(c) + (b^7*c^2 - 10*a*b^5*c^3 - 2*b^6*c^3 + 32*a^2*b^3*c^4 + 12*a*b^4*c^4 + b^5*c^4 - 32*a^3*b*c^
5 - 16*a^2*b^2*c^5 - 6*a*b^3*c^5 + 8*a^2*b*c^6 + (b^6*c^2 - 6*a*b^4*c^3 - 2*b^5*c^3 + 8*a^2*b^2*c^4 + 4*a*b^3*
c^4 + b^4*c^4 - 2*a*b^2*c^5)*sqrt(b^2 - 4*a*c))*A - (a*b^6*c^2 - 8*a^2*b^4*c^3 - 2*a*b^5*c^3 + 16*a^3*b^2*c^4
+ 8*a^2*b^3*c^4 + a*b^4*c^4 - 4*a^2*b^2*c^5 - (a*b^5*c^2 - 4*a^2*b^3*c^3 - 2*a*b^4*c^3 + a*b^3*c^4)*sqrt(b^2 -
 4*a*c))*C)*log(x^2 + 1/2*(a^4*b*c + sqrt(a^8*b^2*c^2 - 4*a^9*c^3))/(a^4*c^2))/((a^3*b^4 - 8*a^4*b^2*c - 2*a^3
*b^3*c + 16*a^5*c^2 + 8*a^4*b*c^2 + a^3*b^2*c^2 - 4*a^4*c^3)*c^2*abs(c)) + 1/16*((b^7*c - 10*a*b^5*c^2 - 2*b^6
*c^2 + 32*a^2*b^3*c^3 + 12*a*b^4*c^3 + b^5*c^3 - 32*a^3*b*c^4 - 16*a^2*b^2*c^4 - 6*a*b^3*c^4 + 8*a^2*b*c^5 + (
b^6*c - 10*a*b^4*c^2 - 2*b^5*c^2 + 32*a^2*b^2*c^3 + 12*a*b^3*c^3 + b^4*c^3 - 32*a^3*c^4 - 16*a^2*b*c^4 - 6*a*b
^2*c^4 + 8*a^2*c^5)*sqrt(b^2 - 4*a*c))*A*abs(c) - (a*b^6*c - 8*a^2*b^4*c^2 - 2*a*b^5*c^2 + 16*a^3*b^2*c^3 + 8*
a^2*b^3*c^3 + a*b^4*c^3 - 4*a^2*b^2*c^4 + (a*b^5*c - 8*a^2*b^3*c^2 - 2*a*b^4*c^2 + 16*a^3*b*c^3 + 8*a^2*b^2*c^
3 + a*b^3*c^3 - 4*a^2*b*c^4)*sqrt(b^2 - 4*a*c))*C*abs(c) - (b^7*c^2 - 10*a*b^5*c^3 - 2*b^6*c^3 + 32*a^2*b^3*c^
4 + 12*a*b^4*c^4 + b^5*c^4 - 32*a^3*b*c^5 - 16*a^2*b^2*c^5 - 6*a*b^3*c^5 + 8*a^2*b*c^6 + (b^6*c^2 - 6*a*b^4*c^
3 - 2*b^5*c^3 + 8*a^2*b^2*c^4 + 4*a*b^3*c^4 + b^4*c^4 - 2*a*b^2*c^5)*sqrt(b^2 - 4*a*c))*A + (a*b^6*c^2 - 8*a^2
*b^4*c^3 - 2*a*b^5*c^3 + 16*a^3*b^2*c^4 + 8*a^2*b^3*c^4 + a*b^4*c^4 - 4*a^2*b^2*c^5 + (a*b^5*c^2 - 4*a^2*b^3*c
^3 - 2*a*b^4*c^3 + a*b^3*c^4)*sqrt(b^2 - 4*a*c))*C)*log(x^2 + 1/2*(a^4*b*c - sqrt(a^8*b^2*c^2 - 4*a^9*c^3))/(a
^4*c^2))/((a^3*b^4 - 8*a^4*b^2*c - 2*a^3*b^3*c + 16*a^5*c^2 + 8*a^4*b*c^2 + a^3*b^2*c^2 - 4*a^4*c^3)*c^2*abs(c
)) - 1/2*(2*B*a*x + A*a)/(a^2*x^2)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 1054, normalized size = 3.66 \begin {gather*} -\frac {4 \sqrt {2}\, B \,b^{2} c \arctanh \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}\, a}+\frac {4 \sqrt {2}\, B \,b^{2} c \arctan \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}\, a}+\frac {16 \sqrt {2}\, B \,c^{2} \arctanh \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {16 \sqrt {2}\, B \,c^{2} \arctan \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {8 A b c \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}+\frac {8 A b c \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {2 A \,b^{3} \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a^{2}}-\frac {2 A \,b^{3} \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a^{2}}-\frac {4 \sqrt {2}\, \sqrt {-4 a c +b^{2}}\, B b c \arctanh \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}\, a}-\frac {4 \sqrt {2}\, \sqrt {-4 a c +b^{2}}\, B b c \arctan \left (\frac {\sqrt {2}\, c x}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{\left (32 a c -8 b^{2}\right ) \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}\, a}+\frac {2 C \,b^{2} \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}+\frac {2 C \,b^{2} \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {8 C c \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{32 a c -8 b^{2}}-\frac {8 C c \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{32 a c -8 b^{2}}+\frac {4 \sqrt {-4 a c +b^{2}}\, A c \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {4 \sqrt {-4 a c +b^{2}}\, A c \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {2 \sqrt {-4 a c +b^{2}}\, A \,b^{2} \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a^{2}}+\frac {2 \sqrt {-4 a c +b^{2}}\, A \,b^{2} \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a^{2}}+\frac {2 \sqrt {-4 a c +b^{2}}\, C b \ln \left (-2 c \,x^{2}-b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {2 \sqrt {-4 a c +b^{2}}\, C b \ln \left (2 c \,x^{2}+b +\sqrt {-4 a c +b^{2}}\right )}{\left (32 a c -8 b^{2}\right ) a}-\frac {A b \ln \relax (x )}{a^{2}}+\frac {C \ln \relax (x )}{a}-\frac {B}{a x}-\frac {A}{2 a \,x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((C*x^2+B*x+A)/x^3/(c*x^4+b*x^2+a),x)

[Out]

-1/2*A/a/x^2-B/a/x-A/a^2*b*ln(x)+1/a*ln(x)*C+8/a*c/(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*A*b-2/a^2/
(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*A*b^3+4/a*c/(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*
A*(-4*a*c+b^2)^(1/2)-2/a^2/(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*A*(-4*a*c+b^2)^(1/2)*b^2+2/a/(32*a
*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*C*(-4*a*c+b^2)^(1/2)*b-8*c/(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^
2)^(1/2))*C+2/a/(32*a*c-8*b^2)*ln(-2*c*x^2-b+(-4*a*c+b^2)^(1/2))*C*b^2-4/a*c/(32*a*c-8*b^2)*B*2^(1/2)/((-b+(-4
*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*(-4*a*c+b^2)^(1/2)*b+16*c^2/(
32*a*c-8*b^2)*B*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*
x)-4/a*c/(32*a*c-8*b^2)*B*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c
)^(1/2)*c*x)*b^2+8/a*c/(32*a*c-8*b^2)*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))*A*b-2/a^2/(32*a*c-8*b^2)*ln(2*c*x^2+b+(
-4*a*c+b^2)^(1/2))*A*b^3-4/a*c/(32*a*c-8*b^2)*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))*A*(-4*a*c+b^2)^(1/2)+2/a^2/(32*
a*c-8*b^2)*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))*A*(-4*a*c+b^2)^(1/2)*b^2-2/a/(32*a*c-8*b^2)*ln(2*c*x^2+b+(-4*a*c+b
^2)^(1/2))*C*(-4*a*c+b^2)^(1/2)*b-8*c/(32*a*c-8*b^2)*ln(2*c*x^2+b+(-4*a*c+b^2)^(1/2))*C+2/a/(32*a*c-8*b^2)*ln(
2*c*x^2+b+(-4*a*c+b^2)^(1/2))*C*b^2-4/a*c/(32*a*c-8*b^2)*B*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(
1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*(-4*a*c+b^2)^(1/2)*b-16*c^2/(32*a*c-8*b^2)*B*2^(1/2)/((b+(-4*a*c+b^
2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)+4/a*c/(32*a*c-8*b^2)*B*2^(1/2)/((b+(-4
*a*c+b^2)^(1/2))*c)^(1/2)*arctan(2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*c*x)*b^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (C a - A b\right )} \log \relax (x)}{a^{2}} + \frac {-\int \frac {B a c x^{2} + {\left (C a - A b\right )} c x^{3} + B a b + {\left (C a b - A b^{2} + A a c\right )} x}{c x^{4} + b x^{2} + a}\,{d x}}{a^{2}} - \frac {2 \, B x + A}{2 \, a x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x^2+B*x+A)/x^3/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

(C*a - A*b)*log(x)/a^2 + integrate(-(B*a*c*x^2 + (C*a - A*b)*c*x^3 + B*a*b + (C*a*b - A*b^2 + A*a*c)*x)/(c*x^4
 + b*x^2 + a), x)/a^2 - 1/2*(2*B*x + A)/(a*x^2)

________________________________________________________________________________________

mupad [B]  time = 1.17, size = 3563, normalized size = 12.37

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x + C*x^2)/(x^3*(a + b*x^2 + c*x^4)),x)

[Out]

symsum(log(root(128*a^5*b^2*c*z^4 - 256*a^6*c^2*z^4 - 16*a^4*b^4*z^4 + 128*C*a^4*b^2*c*z^3 + 256*A*a^4*b*c^2*z
^3 - 128*A*a^3*b^3*c*z^3 - 256*C*a^5*c^2*z^3 - 16*C*a^3*b^4*z^3 + 16*A*a^2*b^5*z^3 + 160*A*C*a^3*b*c^2*z^2 - 7
2*A*C*a^2*b^3*c*z^2 + 8*A*C*a*b^5*z^2 + 40*C^2*a^3*b^2*c*z^2 - 48*B^2*a^3*b*c^2*z^2 + 28*B^2*a^2*b^3*c*z^2 + 3
2*A^2*a*b^4*c*z^2 - 56*A^2*a^2*b^2*c^2*z^2 - 4*B^2*a*b^5*z^2 - 96*C^2*a^4*c^2*z^2 - 4*C^2*a^2*b^4*z^2 - 32*A^2
*a^3*c^3*z^2 - 4*A^2*b^6*z^2 - 16*B^2*C*a^2*b*c^2*z + 32*A*C^2*a^2*b*c^2*z - 12*A^2*C*a*b^2*c^2*z - 4*A*B^2*a*
b^2*c^2*z + 4*B^2*C*a*b^3*c*z - 8*A*C^2*a*b^3*c*z + 16*A^3*a*b*c^3*z + 4*A^2*C*b^4*c*z + 4*C^3*a^2*b^2*c*z - 1
6*A^2*C*a^2*c^3*z + 16*A*B^2*a^2*c^3*z - 16*C^3*a^3*c^2*z - 4*A^3*b^3*c^2*z + 2*A*C^3*a*b*c^2 + 4*A*B^2*C*a*c^
3 - 2*A^2*C^2*a*c^3 + 2*A^3*C*b*c^3 - B^2*C^2*a*b*c^2 - A^2*B^2*b*c^3 - A^2*C^2*b^2*c^2 - C^4*a^2*c^2 - B^4*a*
c^3 - A^4*c^4, z, k)*(root(128*a^5*b^2*c*z^4 - 256*a^6*c^2*z^4 - 16*a^4*b^4*z^4 + 128*C*a^4*b^2*c*z^3 + 256*A*
a^4*b*c^2*z^3 - 128*A*a^3*b^3*c*z^3 - 256*C*a^5*c^2*z^3 - 16*C*a^3*b^4*z^3 + 16*A*a^2*b^5*z^3 + 160*A*C*a^3*b*
c^2*z^2 - 72*A*C*a^2*b^3*c*z^2 + 8*A*C*a*b^5*z^2 + 40*C^2*a^3*b^2*c*z^2 - 48*B^2*a^3*b*c^2*z^2 + 28*B^2*a^2*b^
3*c*z^2 + 32*A^2*a*b^4*c*z^2 - 56*A^2*a^2*b^2*c^2*z^2 - 4*B^2*a*b^5*z^2 - 96*C^2*a^4*c^2*z^2 - 4*C^2*a^2*b^4*z
^2 - 32*A^2*a^3*c^3*z^2 - 4*A^2*b^6*z^2 - 16*B^2*C*a^2*b*c^2*z + 32*A*C^2*a^2*b*c^2*z - 12*A^2*C*a*b^2*c^2*z -
 4*A*B^2*a*b^2*c^2*z + 4*B^2*C*a*b^3*c*z - 8*A*C^2*a*b^3*c*z + 16*A^3*a*b*c^3*z + 4*A^2*C*b^4*c*z + 4*C^3*a^2*
b^2*c*z - 16*A^2*C*a^2*c^3*z + 16*A*B^2*a^2*c^3*z - 16*C^3*a^3*c^2*z - 4*A^3*b^3*c^2*z + 2*A*C^3*a*b*c^2 + 4*A
*B^2*C*a*c^3 - 2*A^2*C^2*a*c^3 + 2*A^3*C*b*c^3 - B^2*C^2*a*b*c^2 - A^2*B^2*b*c^3 - A^2*C^2*b^2*c^2 - C^4*a^2*c
^2 - B^4*a*c^3 - A^4*c^4, z, k)*(root(128*a^5*b^2*c*z^4 - 256*a^6*c^2*z^4 - 16*a^4*b^4*z^4 + 128*C*a^4*b^2*c*z
^3 + 256*A*a^4*b*c^2*z^3 - 128*A*a^3*b^3*c*z^3 - 256*C*a^5*c^2*z^3 - 16*C*a^3*b^4*z^3 + 16*A*a^2*b^5*z^3 + 160
*A*C*a^3*b*c^2*z^2 - 72*A*C*a^2*b^3*c*z^2 + 8*A*C*a*b^5*z^2 + 40*C^2*a^3*b^2*c*z^2 - 48*B^2*a^3*b*c^2*z^2 + 28
*B^2*a^2*b^3*c*z^2 + 32*A^2*a*b^4*c*z^2 - 56*A^2*a^2*b^2*c^2*z^2 - 4*B^2*a*b^5*z^2 - 96*C^2*a^4*c^2*z^2 - 4*C^
2*a^2*b^4*z^2 - 32*A^2*a^3*c^3*z^2 - 4*A^2*b^6*z^2 - 16*B^2*C*a^2*b*c^2*z + 32*A*C^2*a^2*b*c^2*z - 12*A^2*C*a*
b^2*c^2*z - 4*A*B^2*a*b^2*c^2*z + 4*B^2*C*a*b^3*c*z - 8*A*C^2*a*b^3*c*z + 16*A^3*a*b*c^3*z + 4*A^2*C*b^4*c*z +
 4*C^3*a^2*b^2*c*z - 16*A^2*C*a^2*c^3*z + 16*A*B^2*a^2*c^3*z - 16*C^3*a^3*c^2*z - 4*A^3*b^3*c^2*z + 2*A*C^3*a*
b*c^2 + 4*A*B^2*C*a*c^3 - 2*A^2*C^2*a*c^3 + 2*A^3*C*b*c^3 - B^2*C^2*a*b*c^2 - A^2*B^2*b*c^3 - A^2*C^2*b^2*c^2
- C^4*a^2*c^2 - B^4*a*c^3 - A^4*c^4, z, k)*((16*B*a^5*c^4 + 4*B*a^3*b^4*c^2 - 20*B*a^4*b^2*c^3)/a^3 + (x*(240*
C*a^5*c^4 - 224*A*a^4*b*c^4 - 12*A*a^2*b^5*c^2 + 104*A*a^3*b^3*c^3 + 12*C*a^3*b^4*c^2 - 108*C*a^4*b^2*c^3))/a^
3 + (root(128*a^5*b^2*c*z^4 - 256*a^6*c^2*z^4 - 16*a^4*b^4*z^4 + 128*C*a^4*b^2*c*z^3 + 256*A*a^4*b*c^2*z^3 - 1
28*A*a^3*b^3*c*z^3 - 256*C*a^5*c^2*z^3 - 16*C*a^3*b^4*z^3 + 16*A*a^2*b^5*z^3 + 160*A*C*a^3*b*c^2*z^2 - 72*A*C*
a^2*b^3*c*z^2 + 8*A*C*a*b^5*z^2 + 40*C^2*a^3*b^2*c*z^2 - 48*B^2*a^3*b*c^2*z^2 + 28*B^2*a^2*b^3*c*z^2 + 32*A^2*
a*b^4*c*z^2 - 56*A^2*a^2*b^2*c^2*z^2 - 4*B^2*a*b^5*z^2 - 96*C^2*a^4*c^2*z^2 - 4*C^2*a^2*b^4*z^2 - 32*A^2*a^3*c
^3*z^2 - 4*A^2*b^6*z^2 - 16*B^2*C*a^2*b*c^2*z + 32*A*C^2*a^2*b*c^2*z - 12*A^2*C*a*b^2*c^2*z - 4*A*B^2*a*b^2*c^
2*z + 4*B^2*C*a*b^3*c*z - 8*A*C^2*a*b^3*c*z + 16*A^3*a*b*c^3*z + 4*A^2*C*b^4*c*z + 4*C^3*a^2*b^2*c*z - 16*A^2*
C*a^2*c^3*z + 16*A*B^2*a^2*c^3*z - 16*C^3*a^3*c^2*z - 4*A^3*b^3*c^2*z + 2*A*C^3*a*b*c^2 + 4*A*B^2*C*a*c^3 - 2*
A^2*C^2*a*c^3 + 2*A^3*C*b*c^3 - B^2*C^2*a*b*c^2 - A^2*B^2*b*c^3 - A^2*C^2*b^2*c^2 - C^4*a^2*c^2 - B^4*a*c^3 -
A^4*c^4, z, k)*x*(320*a^6*c^4 + 24*a^4*b^4*c^2 - 176*a^5*b^2*c^3))/a^3) - (8*B*C*a^4*c^4 + 20*A*B*a^2*b^3*c^3
+ 4*B*C*a^2*b^4*c^2 - 16*B*C*a^3*b^2*c^3 - 4*A*B*a*b^5*c^2 - 20*A*B*a^3*b*c^4)/a^3 + (x*(36*A^2*a^3*c^5 + 60*C
^2*a^4*c^4 + 22*A^2*a^2*b^2*c^4 - 28*B^2*a^2*b^3*c^3 - 16*C^2*a^3*b^2*c^3 - 8*A^2*a*b^4*c^3 + 4*B^2*a*b^5*c^2
+ 50*B^2*a^3*b*c^4 + 24*A*C*a^2*b^3*c^3 - 92*A*C*a^3*b*c^4))/a^3) - (A^2*B*a^2*c^5 + 7*B*C^2*a^3*c^4 - 4*A^2*B
*a*b^2*c^4 - 4*B*C^2*a^2*b^2*c^3 + 4*A*B*C*a*b^3*c^3 - 4*A*B*C*a^2*b*c^4)/a^3 + (x*(2*A^3*b^3*c^4 + 5*C^3*a^3*
c^4 - 12*A^3*a*b*c^5 - 17*A*B^2*a^2*c^5 + 13*A^2*C*a^2*c^5 + 6*A*B^2*a*b^2*c^4 - 9*A*C^2*a^2*b*c^4 + 2*A^2*C*a
*b^2*c^4 - 4*B^2*C*a*b^3*c^3 + 14*B^2*C*a^2*b*c^4))/a^3) - (A^3*B*b*c^5 + B*C^3*a^2*c^4 - A^2*B*C*a*c^5 - A*B*
C^2*a*b*c^4)/a^3 + (x*(A^4*c^6 + B^4*a*c^5 - A^3*C*b*c^5 + A^2*C^2*a*c^5 + B^2*C^2*a*b*c^4 - 3*A*B^2*C*a*c^5))
/a^3)*root(128*a^5*b^2*c*z^4 - 256*a^6*c^2*z^4 - 16*a^4*b^4*z^4 + 128*C*a^4*b^2*c*z^3 + 256*A*a^4*b*c^2*z^3 -
128*A*a^3*b^3*c*z^3 - 256*C*a^5*c^2*z^3 - 16*C*a^3*b^4*z^3 + 16*A*a^2*b^5*z^3 + 160*A*C*a^3*b*c^2*z^2 - 72*A*C
*a^2*b^3*c*z^2 + 8*A*C*a*b^5*z^2 + 40*C^2*a^3*b^2*c*z^2 - 48*B^2*a^3*b*c^2*z^2 + 28*B^2*a^2*b^3*c*z^2 + 32*A^2
*a*b^4*c*z^2 - 56*A^2*a^2*b^2*c^2*z^2 - 4*B^2*a*b^5*z^2 - 96*C^2*a^4*c^2*z^2 - 4*C^2*a^2*b^4*z^2 - 32*A^2*a^3*
c^3*z^2 - 4*A^2*b^6*z^2 - 16*B^2*C*a^2*b*c^2*z + 32*A*C^2*a^2*b*c^2*z - 12*A^2*C*a*b^2*c^2*z - 4*A*B^2*a*b^2*c
^2*z + 4*B^2*C*a*b^3*c*z - 8*A*C^2*a*b^3*c*z + 16*A^3*a*b*c^3*z + 4*A^2*C*b^4*c*z + 4*C^3*a^2*b^2*c*z - 16*A^2
*C*a^2*c^3*z + 16*A*B^2*a^2*c^3*z - 16*C^3*a^3*c^2*z - 4*A^3*b^3*c^2*z + 2*A*C^3*a*b*c^2 + 4*A*B^2*C*a*c^3 - 2
*A^2*C^2*a*c^3 + 2*A^3*C*b*c^3 - B^2*C^2*a*b*c^2 - A^2*B^2*b*c^3 - A^2*C^2*b^2*c^2 - C^4*a^2*c^2 - B^4*a*c^3 -
 A^4*c^4, z, k), k, 1, 4) - (A/(2*a) + (B*x)/a)/x^2 - (log(x)*(A*b - C*a))/a^2

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((C*x**2+B*x+A)/x**3/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________